ZooKeeper典型使用场景一览[转]

本文转自:http://www.kuqin.com/system-analysis/20111120/315148.html
ZooKeeper是一个高可用的分布式数据管理与系统协调框架。基于对Paxos算法的实现,使该框架保证了分布式环境中数据的强一致性,也正是基于这样的特性,使得zookeeper能够应用于很多场景。网上对zk的使用场景也有不少介绍,本文将结合作者身边的项目例子,系统的对zk的使用场景进行归类介绍。 值得注意的是,zk并不是生来就为这些场景设计,都是后来众多开发者根据框架的特性,摸索出来的典型使用方法。因此,也非常欢迎你分享你在ZK使用上的奇技淫巧。

 Read more

Lucene Similarity (Lucene 文档评分score机制详解) [转载]

本文转载自:http://blog.csdn.net/duck_genuine/article/details/6394701

文档的分值代表了该文档在特定查询词下对应的相关性高低,他关联着信息检索向量空间模型中的向量夹角的接近度。一个文档越与查询词相关,得分越高。分值计算公式如下:

 Read more

simhash算法的原理(转载)

本文转自:http://www.cnblogs.com/linecong/archive/2010/08/28/simhash.html

第 一次听说google的simhash算法[1]时,我感到很神奇。传统的hash算法只负责将原始内容尽量均匀随机地映射为一个签名值,原理上相当于伪 随机数产生算法。传统hash算法产生的两个签名,如果相等,说明原始内容在一定概率下是相等的;如果不相等,除了说明原始内容不相等外,不再提供任何信 息,因为即使原始内容只相差一个字节,所产生的签名也很可能差别极大。从这个意义上来说,要设计一个hash算法,对相似的内容产生的签名也相近,是更为 艰难的任务,因为它的签名值除了提供原始内容是否相等的信息外,还能额外提供不相等的原始内容的差异程度的信息。

 Read more